Environmental Product Declarations of the European Plastics Manufacturers

Polyvinylchloride (PVC)
Suspension polymerisation
Introduction

This Environmental Product Declaration (EPD) is based upon life cycle inventory (LCI) data from PlasticsEurope’s Eco-profile programme. It has been prepared according to PlasticsEurope’s Product Category Rules (PCR) for Uncompounded Polymer Resins and Reactive Polymer Precursors (June 2006). EPDs provide environmental performance data, but no information on the economic and social aspects which would be necessary for a complete sustainability assessment. Further, they do not imply a value judgment between environmental criteria. This EPD describes the production of the PVC polymer from cradle to gate (from crude oil and salt extraction to powder coming out the polyvinyl chloride manufacturing plant). Please keep in mind that comparisons cannot be made on the level of polymers alone: it is necessary to consider the full life cycle of an application in order to compare the performance of different materials and the effects of relevant life cycle parameters. This EPD is intended to be used by member companies, to support product-orientated environmental management; by users of plastics, as a building block of life cycle assessment (LCA) studies of individual products; and by other interested parties, as a source of life cycle information.

Description of the product and the production process

This EPD is for suspension polyvinyl chloride (S-PVC). S-PVC accounts for more than 80% of the PVC market. The functional unit, to which all data given in this EPD refer, is 1 kg of S-PVC polymer (without additives).

Suspension polymerisation

Liquid vinyl chloride is insoluble in water and disperses to fine droplets when mechanically agitated. The droplets remain in suspension as long as the agitation continues. Polymerisation is carried out in pressurized vessels under the influence of heat and initiators and/or catalysts, which are soluble in the monomer. A typical initiator is organic peroxide. The reaction is exothermic and the heat evolved is removed in order to keep reaction temperature constant. Suspension agents known as protective colloids are added to the reactor to prevent the monomer droplets coalescing and the polymer particles from agglomerating. When the desired conversion is reached, the batch is transferred to a blow down vessel. Several batches may be transferred to this vessel for blending. Unreacted monomer is extracted from the polymer, recovered and recycled back to the polymerization reactor. The polymer particles are dried.

Data sources and allocation

All data refer to a European industry average (reference year 2005); all calculations were updated in 2006. ECVM’s and PlasticsEurope’s member companies supplied information on the production of hydrocarbon precursors as well as on chlorine and the relevant intermediates EDC and VCM. Information on the production of fuels, energy and the main hydrocarbon resources was derived from the reports of the International Energy Agency. Data for ancillary operations and transport were obtained from other manufacturers and operators as well as publicly available LCI databases. Mass allocation was used for multi-output processes. Vertical averaging was performed to take into account company- and site-specific production routes and to protect confidentiality.

Use phase and end-of-life management

By choosing suitable stabilisers and plasticisers, PVC can be converted into a wide variety of different products. S-PVC is used for most rigid PVC applications such as pipes, profiles, other building materials and hard foils. It can also be plasticised and used for most flexible applications such as cable insulation, soft foils and medical products. Building and construction is the predominant market of S-PVC. For responsible end-of-life management, ECVM recommends recycling, as far as economically feasible and environmentally sensible. Alternatively, feedstock recycling or energy recovery can be conducted in specialized plants equipped for recycling hydrochloric acid. In LCA studies, credits for recovered products should be awarded on the basis of substituted virgin materials, if functionally equivalent.

Environmental performance

The tables below show the environmental performance indicators associated with the production of 1 kg of suspension PVC polymer (S-PVC, without additives).
Input parameters

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-renewable materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Minerals</td>
<td>g</td>
<td>643</td>
</tr>
<tr>
<td>• Fossil fuels</td>
<td>g</td>
<td>1,150</td>
</tr>
<tr>
<td>• Uranium</td>
<td>g</td>
<td>0.013</td>
</tr>
<tr>
<td>Renewable materials (biomass)</td>
<td>g</td>
<td>0.343</td>
</tr>
<tr>
<td>Water use (^a)</td>
<td>g</td>
<td>10,000</td>
</tr>
<tr>
<td>Non-renewable energy resources (^b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• for energy</td>
<td>MJ</td>
<td>28.61</td>
</tr>
<tr>
<td>• for feedstock</td>
<td>MJ</td>
<td>26.85</td>
</tr>
<tr>
<td>Renewable energy resources (biomass) (^b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• for energy</td>
<td>MJ</td>
<td>1.27</td>
</tr>
<tr>
<td>• for feedstock</td>
<td>MJ</td>
<td>0</td>
</tr>
</tbody>
</table>

\(^a\) This indicator comprises only process water. Cooling water is not included.
\(^b\) Calculated as upper heating value (UHV).

Output parameters

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWP(^a)</td>
<td>kg CO(_2) eq</td>
<td>1.900</td>
</tr>
<tr>
<td>ODP(^a)</td>
<td>g CFC-11 eq</td>
<td>n/a(^b)</td>
</tr>
<tr>
<td>AP(^b)</td>
<td>g SO(_2) eq</td>
<td>5.300</td>
</tr>
<tr>
<td>POC(^b)</td>
<td>g Ethene eq</td>
<td>0.420</td>
</tr>
<tr>
<td>N(^b)</td>
<td>g PO(_4) eq</td>
<td>0.620</td>
</tr>
<tr>
<td>Dust/particulate matter</td>
<td>g PM(_{10})</td>
<td>0.430</td>
</tr>
<tr>
<td>Total particulate matter</td>
<td>g</td>
<td>0.486</td>
</tr>
<tr>
<td>Waste</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Non-hazardious</td>
<td>kg</td>
<td>0.142</td>
</tr>
<tr>
<td>• Hazardous</td>
<td>kg</td>
<td>0.008</td>
</tr>
</tbody>
</table>

\(^a\) IPCC 2004 \(^b\) CML 2002

Additional environmental and health information

The methodology for assessing toxicity impacts on humans and the environment within LCA is still subject to scientific debate and cannot support business decisions yet. Additionally, emissions potentially contributing to toxicity impacts originate essentially from the combustion of fuels for energy production and from oil refinery, not from specific PVC processes (assessed according to CML 2002). ECVM has issued Industry Charters for the production of VCM and PVC (suspension process) in 1994. Among other commitments, these Charters set tight limits on VCM emissions as well as on the maximum amount of residual VCM present in PVC resin. The inter-governmental Oslo and Paris Commissions for the Protection of the North Sea (OSPAR) later issued two decisions on emissions from VCM and S-PVC plants: the limits imposed by OSPAR for VCM emissions are broadly in line with the limits specified in the Charter. The companies that signed the charters undergo an independent third-party verification of compliance. The levels of monomer and other volatile organic compounds in PVC resin are very low and do not present any health or environmental risk.

Additional technical information

PVC is easy to recycle mechanically several times in conventional equipment. Large quantities of post-consumer PVC are already being recycled, and the recycling of post-consumer PVC is increasing steadily. Other options are mechanical recycling by dissolution processes (extracting PVC from products), or feedstock recycling (recovery of a basic chemical substance). The main difficulty for the recycling of post-consumer PVC is in collecting suitable waste at an acceptable cost. This is the case for all plastics as well as many other materials. PVC, like other thermoplastics, has intrinsic energy, which can be utilized through energy recovery operations. The chlorine part ends up in the form of hydrochloric acid, which can also be recovered, purified and re-used. Flexible PVC will generally contribute higher energy content than rigid PVC, although even rigid PVC has a calorific value similar to paper. Recovering both hydrochloric acid and energy significantly increases the eco-efficiency of incineration or other recovery options. Landfilling is the least sustainable waste treatment option for all plastics. A study carried out in 2002–2003 in order to compare different end-of-life treatment options for PVC-rich waste concluded that all recovery/recycling options are preferable to landfill.

Additional economic information

ECVM’s member companies undertake further efforts to reduce climate impacts, e.g. by introducing energy-saving technologies such as membrane electrolysis. PVC is among the polymers with the lowest releases of greenhouse gases per kg. The remaining greenhouse gas emissions related to PVC production can be addressed, e.g. through offsetting, as offered by a number of non-profit organisations. For PVC applications, such as windows or pipes, the cost of offsetting these remaining emissions amounts to less than 1 % of the product price. This demonstrates how economic and environmental aspects can be combined to achieve the fastest possible progress towards a sustainability objective.
Information

Company/Association

European Council of Vinyl Manufacturers (ECVM)
Avenue E van Nieuwenhuysen 4, Box 3
B–1160 Brussels, Belgium
Tel.: +32 (2) 676 74 41, Fax: +32 (2) 676 74 47
Enquiries: www.pvc.org

Programme manager

Five Winds International

This Environmental Product Declaration has been reviewed by Five Winds International. It is approved according to the Product Category Rules PCR 2006-06 for Uncompounded Polymer Resins and Reactive Polymer Precursors and ISO FDIS 14025. Registration number: PlasticsEurope-2008-0001; validation expires on 31 December 2011.

Programme owner

PlasticsEurope
Avenue E van Nieuwenhuysen 4, Box 3
B–1160 Brussels, Belgium
Tel.: +32 (2) 675 32 97, Fax: +32 (2) 675 39 35
E-mail: info@plasticseurope.org

For copies of this EPD, for the underlying LCI data (eco-profile), and for additional information, please refer to http://www.plasticseurope.org/.

References

• Product photographs on cover with kind permission by SolVIn.

Glossary

Acidification potential, AP — An environmental impact category (“acid rain”). Emissions (e.g. sulphur oxides, nitrous oxides, ammonia) from transport, energy generation, combustion processes, and agriculture cause acidity of rainwater and thus damage to woodlands, lakes and buildings. Reference substance: sulphur dioxide.

CML 2002 — LCA Guide of the Leiden University provides the characterisation factors for calculating environmental impacts.

Environmental Product Declaration, EPD — A standardised method (ISO 14025) of communicating the environmental performance of a product or service based on LCA data.

Ethylene dichloride, EDC — A precursor of the vinyl chloride monomer (VCM).

Global warming potential, GWP — An environmental impact category (“greenhouse effect”). Energy from the sun drives the earth’s weather and climate, and heats the earth’s surface. In turn, the earth radiates energy back into space. Atmospheric greenhouse gases (water vapour, carbon dioxide, and other gases) are influencing the energy balance in a way that leads to an increased average temperature on earth’s surface. Problems arise when the atmospheric concentration of greenhouse gases increases due to the “man-made” (or anthropogenic) greenhouse effect: this additional greenhouse effect caused by human activities may further increase the average global temperature. The index GWP is calculated as a multiple equivalent of the absorption due to the substance in question in relation to the emission of 1 kg of carbon dioxide, the reference substance, over 100 years.

Intergovernmental panel of climate change, IPCC — Source of updated GWP characterisation factors

Life cycle assessment, LCA — A standardised management tool (ISO 14040–44) for appraising and quantifying the total environmental impact of products or activities over their entire life cycle of particular materials, processes, products, technologies, services or activities.

Nutrification potential, NP — An environmental impact category (“over-fertilisation”). Emissions such as phosphate, nitrate, nitrous oxides, and ammonia from transport, energy generation, agriculture (fertilisers) and wastewater increase the growth of aquatic plants and can produce algae blooms that consume the oxygen in water and thus smother other aquatic life. This is called eutrophication and causes damages to rivers, lakes, plants, and fish. Reference substance: phosphate.

Offsetting — Financing activities which compensate the climate effect (and often at the same time also the use of non-renewable resources) resulting from the production.

Ozone depletion potential, ODP — An environmental impact category (“ozone hole”). The index ODP is calculated as the contribution to the breakdown of the ozone layer that would result from the emission of 1 kg of the substance in question in relation to the emission of 1 kg of CFC-11 as a reference substance.

Photochemical ozone creation potential, POCP — An environmental impact category (“summer smog”). The index used to translate the level of emissions of various gases into a common measure to compare their contributions to the change of ground-level ozone concentration. The index POCP is calculated as the contribution to ozone formation close to the ground due the substance in question in relation to the emission of 1 kg of ethene as a reference substance. NOTE: Due to recent methodology developments, nitrous oxides and carbon monoxide are now taken into account for POCP calculation; accordingly, figures cannot be compared anymore with previous POCP results.

Polyvinyl chloride, PVC — A halogenated polymer based on the raw materials petrochemicals (oil and gas) and salt (sodium chloride).

Vinyl chloride monomer, VCM — A precursor of polyvinyl chloride (PVC).

Product category rules, PCR — A set of rules for the preparation of LCA and EPD within a functionally defined class of products. A PCR document is a necessary component of any Type III Environmental Declaration programme (ISO 14025).